题目内容
(理)数列{an},若对任意的k∈N*,满足
=q1,
=q2
是常数且不相等),则称数列{an}为“跳跃等比数列”,则下列关于“跳跃等比数列”的命题:
(1)若数列{an}为“跳跃等比数列”,则满足bk=a2k•a2k-1(k∈N*)的数列{bn}是等比数列;
(2)若数列{an}为“跳跃等比数列”,则满足bk=
(k∈N*)的数列{bn}是等比数列;
(3)若数列{an}为等比数列,则数列{(-1)nan}是“跳跃等比数列”;
(4)若数列{an}为等比数列,则满足bn=
(k∈N*)的数列{bn}是“跳跃等比数列”;
(5)若数列{an}和{bn}都是“跳跃等比数列”,则数列{an•bn}也是“跳跃等比数列”;其中正确的命题个数为( )
a2k+1 |
a2k-1 |
a2k+2 |
a2k |
|
(1)若数列{an}为“跳跃等比数列”,则满足bk=a2k•a2k-1(k∈N*)的数列{bn}是等比数列;
(2)若数列{an}为“跳跃等比数列”,则满足bk=
a2k |
a2k-1 |
(3)若数列{an}为等比数列,则数列{(-1)nan}是“跳跃等比数列”;
(4)若数列{an}为等比数列,则满足bn=
|
(5)若数列{an}和{bn}都是“跳跃等比数列”,则数列{an•bn}也是“跳跃等比数列”;其中正确的命题个数为( )
分析:(1)根据数列{an}为“跳跃等比数列”,则
=q2•q1(常数),然后根据等比数列的定义可判定数列{bn}是否为等比数列;
(2)根据数列{an}为“跳跃等比数列”,则
=
(常数),然后根据等比数列的定义可知数列{bn}是否为等比数列;
(3)根据数列{an}为等比数列,假设公比为q,则新数列奇数项之比与偶数项之比相等不符合定义,从而确定数列{(-1)nan}是否为“跳跃等比数列”;
(4)根据数列{an}为等比数列,假设公比为q,假设n=2k-1,则
≠常数,根据“跳跃等比数列”的定义进行判定数列{bn};
(5)根据数列{an}和{bn}都是“跳跃等比数列”,然后根据“跳跃等比数列”的定义判定数列{an•bn}.
bk+1 |
bk |
(2)根据数列{an}为“跳跃等比数列”,则
bk+1 |
bk |
q2 |
q1 |
(3)根据数列{an}为等比数列,假设公比为q,则新数列奇数项之比与偶数项之比相等不符合定义,从而确定数列{(-1)nan}是否为“跳跃等比数列”;
(4)根据数列{an}为等比数列,假设公比为q,假设n=2k-1,则
bn+1 |
bn |
(5)根据数列{an}和{bn}都是“跳跃等比数列”,然后根据“跳跃等比数列”的定义判定数列{an•bn}.
解答:解:(1)若数列{an}为“跳跃等比数列”,则
=
=q2•q1(常数),根据等比数列的定义可知数列{bn}是等比数列,故正确;
(2)若数列{an}为“跳跃等比数列”,则
=
=
(常数),根据等比数列的定义可知数列{bn}是等比数列,故正确;
(3)若数列{an}为等比数列,假设公比为q,则
=q2,
=q2,公比相等不符合定义,∴数列{(-1)nan}不是“跳跃等比数列”,故不正确;
(4)若数列{an}为等比数列,假设公比为q,假设n=2k-1,则
=
=
≠常数,故数列{bn}不是“跳跃等比数列”,故不正确;
(5)若数列{an}和{bn}都是“跳跃等比数列”,则
=q1,
=q2
是常数且不相等),
= p1,
=p2(p1,p2是常数且不相等),那么数列{an•bn}也是“跳跃等比数列”,故正确.
故选C.
bk+1 |
bk |
a2k+2• a2k+1 |
a2k•a2k-1 |
(2)若数列{an}为“跳跃等比数列”,则
bk+1 |
bk |
a2k+2•a2k-1 |
a2k•a2k+1 |
q2 |
q1 |
(3)若数列{an}为等比数列,假设公比为q,则
-a2k+1 |
-a2k-1 |
a2k+2 |
a2k |
(4)若数列{an}为等比数列,假设公比为q,假设n=2k-1,则
bn+1 |
bn |
q | ||
q
|
1 | ||
|
(5)若数列{an}和{bn}都是“跳跃等比数列”,则
a2k+1 |
a2k-1 |
a2k+2 |
a2k |
|
b2k+1 |
b2k-1 |
b2k+2 |
b2k |
故选C.
点评:本题主要考查了等比关系的确定,以及新的定义的应用,同时考查了计算能力,属于中档题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目