题目内容
在数列{an}中,如果对任意的n∈N*,都有
-
=λ(λ为常数),则称数列{an}为比等差数列,λ称为比公差.现给出以下命题,其中所有真命题的序号是
①若数列{Fn}满足F1=1,F2=1,Fn=Fn-1+Fn-2(n≥3),则该数列不是比等差数列;
②若数列{an}满足an=(n-1)•2n-1,则数列{an}是比等差数列,且比公差λ=2;
③等差数列是常数列是成为比等差数列的充分必要条件;
(文)④数列{an}满足:an+1=an2+2an,a1=2,则此数列的通项为an=32n-1-1,且{an}不是比等差数列;
(理)④数列{an}满足:a1=
,且an=
(n≥2,n∈N*),则此数列的通项为an=
,且{an}不是比等差数列.
an+2 |
an+1 |
an+1 |
an |
①④
①④
.①若数列{Fn}满足F1=1,F2=1,Fn=Fn-1+Fn-2(n≥3),则该数列不是比等差数列;
②若数列{an}满足an=(n-1)•2n-1,则数列{an}是比等差数列,且比公差λ=2;
③等差数列是常数列是成为比等差数列的充分必要条件;
(文)④数列{an}满足:an+1=an2+2an,a1=2,则此数列的通项为an=32n-1-1,且{an}不是比等差数列;
(理)④数列{an}满足:a1=
3 |
2 |
3nan-1 |
2an-1+n-1 |
n•3n |
3n-1 |
分析:根据比等差数列的定义
-
=λ(λ为常数),逐一判断①~④中的四个数列是否是比等差数列,即可得到答案.
an+2 |
an+1 |
an+1 |
an |
解答:解:数列{Fn}满足F1=1,F2=1,F3=2,F4=3,F5=5,
-
=1,
-
=-
≠1,
则该数列不是比等差数列,
故①正确;
若数列{an}满足an=(n-1)•2n-1,
则
-
=
-
=
不为定值,
即数列{an}不是比等差数列,
故②错误;
③当等差数列为常数列0,0,0,0,…,0时,不能成为比等差数列,
故③错误;
(文)④∵数列{an}满足:an+1=an2+2an,
a1=2=321-1-1,
∴a2=4+4=8=322-1-1,
a3=64+16=80=3 23-1-1.
由此猜想an=32n-1-1.
用数学归纳法证明:
①当n=1时,a1=2=321-1-1,成立.
②假设当n=k时成立,即ak=32k-1-1,
则ak+1=(32k-1-1)2+2(32k-1-1)
=32k-2×3 2k-1+1-2×32k-1-2
=32k-1,也成立,
∴此数列的通项为an=32n-1-1.
∴
-
=
-
不是常数,
故{an}不是比等差数列,故④正确;
(理)④∵数列{an}满足:a1=
,且an=
(n≥2,n∈N*),
∴a1=
=
,
a2=
=
=
,
a3 =
=
=
.
由此猜想an=
.
用数学归纳法证明:
①当n=1时,a1=
=
,成立;
②假设n=k时,等式成立,即ak=
,
则ak+1=
=
,也成立.
故此数列的通项为an=
,
∴
-
=
-
不是常数,
故{an}不是比等差数列,故④正确;
故答案为:①④.
F3 |
F2 |
F2 |
F1 |
F4 |
F3 |
F3 |
F2 |
1 |
2 |
则该数列不是比等差数列,
故①正确;
若数列{an}满足an=(n-1)•2n-1,
则
an+2 |
an+1 |
an+1 |
an |
(n+1)•2n+1 |
n•2n |
n•2n |
(n-1)•2n-1 |
-2 |
(n-1)•n |
即数列{an}不是比等差数列,
故②错误;
③当等差数列为常数列0,0,0,0,…,0时,不能成为比等差数列,
故③错误;
(文)④∵数列{an}满足:an+1=an2+2an,
a1=2=321-1-1,
∴a2=4+4=8=322-1-1,
a3=64+16=80=3 23-1-1.
由此猜想an=32n-1-1.
用数学归纳法证明:
①当n=1时,a1=2=321-1-1,成立.
②假设当n=k时成立,即ak=32k-1-1,
则ak+1=(32k-1-1)2+2(32k-1-1)
=32k-2×3 2k-1+1-2×32k-1-2
=32k-1,也成立,
∴此数列的通项为an=32n-1-1.
∴
an+2 |
an+1 |
an+1 |
an |
32n+1-1 |
32n-1 |
32n-1 |
32n-1-1 |
故{an}不是比等差数列,故④正确;
(理)④∵数列{an}满足:a1=
3 |
2 |
3nan-1 |
2an-1+n-1 |
∴a1=
3 |
2 |
1•31 |
31-1 |
a2=
3×2×
| ||
2×
|
9 |
4 |
2×32 |
32-1 |
a3 =
3×3×
| ||
2×
|
81 |
26 |
3×33 |
33-1 |
由此猜想an=
n•3n |
3n-1 |
用数学归纳法证明:
①当n=1时,a1=
3 |
2 |
1•31 |
31-1 |
②假设n=k时,等式成立,即ak=
k•3k |
3k-1 |
则ak+1=
3(k+1)•
| ||
2•
|
(k+1)•3k+1 |
3k+1-1 |
故此数列的通项为an=
n•3n |
3n-1 |
∴
an+2 |
an+1 |
an+1 |
an |
| ||
|
| ||
|
故{an}不是比等差数列,故④正确;
故答案为:①④.
点评:本题考查新定义,解题时应正确理解新定义,同时注意利用列举法判断命题为假,属于难题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目