题目内容

【题目】在△ABC中,内角A、B、C所对的边分别是a、b、c,已知A=60°,b=5,c=4.
(1)求a;
(2)求sinBsinC的值.

【答案】
(1)解:因为A=60°,b=5,c=4,

所以由余弦定理得,a2=b2+c2﹣2bccosA

=25+16﹣ =21,

则a=


(2)解:由正弦定理得, = =

所以sinB= = ,sinC= =

所以sinBsinC= × =


【解析】(1)由题意和余弦定理列出式子,即可求出a的值;(2)由条件和正弦定理求出sinB和sinC的值,代入式子求出答案.
【考点精析】根据题目的已知条件,利用正弦定理的定义和余弦定理的定义的相关知识可以得到问题的答案,需要掌握正弦定理:;余弦定理:;;

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网