题目内容
3.已知函数f(x)=$\sqrt{3}(cos\frac{x}{2}-sin\frac{x}{2})(cos\frac{x}{2}+sin\frac{x}{2})+2sin\frac{x}{2}cos\frac{x}{2}$.(1)求f(x)的最小正周期;
(2)若将f(x)的图象向右平移$\frac{π}{6}$个单位,得到函数g(x)的图象,求函数g(x)的单调递增区间.
分析 (1)化简得f(x)=$\sqrt{3}$cosx+sinx=2sin(x+$\frac{π}{3}$),代入周期公式计算;
(2)由图形变换得g(x)=2sin(x+$\frac{π}{6}$),令-$\frac{π}{2}$+2kπ≤x+$\frac{π}{6}$≤$\frac{π}{2}$+2kπ,解出g(x)的单调递增区间.
解答 解:(1)f(x)=$\sqrt{3}(cos\frac{x}{2}-sin\frac{x}{2})(cos\frac{x}{2}+sin\frac{x}{2})+2sin\frac{x}{2}cos\frac{x}{2}$
=$\sqrt{3}$(cos2$\frac{x}{2}$-sin2$\frac{x}{2}$)+sinx=$\sqrt{3}$cosx+sinx=2sin(x+$\frac{π}{3}$).
∴f(x)的最小正周期T=2π.
(2)g(x)=2sin(x-$\frac{π}{6}$+$\frac{π}{3}$)=2sin(x+$\frac{π}{6}$).
令-$\frac{π}{2}$+2kπ≤x+$\frac{π}{6}$≤$\frac{π}{2}$+2kπ.解得$-\frac{2π}{3}$+2kπ≤x≤$\frac{π}{3}$+2kπ,
∴g(x)的单调递增区间是[$-\frac{2π}{3}$+2kπ,$\frac{π}{3}$+2kπ],k∈Z.
点评 本题考查了三角函数的恒等变换和图象变换,属于基础题.
练习册系列答案
相关题目
20.
如图,是直三棱柱ABC-A1B1C1中,AA1=6,AB=AC=4,AB⊥AC,点E,F分别是AB1,CC1动点,$\overrightarrow{AF}$=λ$\overrightarrow{F{B}_{1}}$,$\overrightarrow{CE}$=μ$\overrightarrow{E{C}_{1}}$.则当V${\;}_{三棱锥{B}_{1}-EFB}$=4时,必有( )
| A. | λ=$\frac{1}{3}$ | B. | μ=$\frac{1}{3}$ | C. | λ=3 | D. | μ=3 |
8.函数f(x)=$\sqrt{3}$sinx-cosx(x∈[0,π])的单调递减区间是( )
| A. | [0,$\frac{2π}{3}$] | B. | [$\frac{π}{2}$,$\frac{2π}{3}$] | C. | [$\frac{2π}{3}$,π] | D. | [$\frac{π}{2}$,$\frac{5π}{6}$] |
13.设命题p:∅=0,q:$\sqrt{2}$∈R,则下列结论正确的是( )
| A. | p∧q为真 | B. | p∨q为真 | C. | p为真 | D. | ¬p为真 |