题目内容

已知有穷数列{an}共有2k项(整数k≥2),首项a1=2,设该数列的前n项和为Sn,且Sn=
an+1-2
a-1
(n=1,2,3,…,2k-1),其中常数a>1.
(1)求{an}的通项公式;
(2)若a=2
2
2k-1
,数列{bn}满足bn=
1
n
log2(a1a2an)
,(n=1,2,3,…,2k),求证:1≤bn≤2;
(3)若(2)中数列{bn}满足不等式:|b1-
3
2
|+|b2-
3
2
|+…+|b2k-1-
3
2
|+|b2k-
3
2
|≤4
,求k的最大值.
分析:(1)要根据Sn与an的固有关系an=
s1    n=1
sn-sn-1    n≥2
,得出an+2=a•a n+1,再考虑
a2
a1
的值,判定{an}的性质去求解.
(2)首先利用(1)的结论和条件获得an的表达式,然后对a1a2…an进行化简,结合对数运算即可获得数列{bn}的通项公式;
(3)首先利用分类讨论对 bn
3
2
的大小进行判断,然后对所给不等式去绝对值,即可找到关于k的不等式,进而问题即可获得解答.
解答:解:(1)Sn=
an+1-2
a-1
①,S n+1=
an+2-2
a-1

②-①得,S n+1-Sn=a n+1=
an+2-an+1
a-1

化简整理得,an+2=a•an+1
an+2
an+1
=a(  n≥1)
又由已知a1=S1=
a2- 2
a-1
,整理得出a2=a•a1
∴数列{an}是以a为公比,以2为首项的等比数列,
通项公式为an=2×a n-1

(2)由(1)得an=2an-1
∴a1a2an=2na1+2+…+(n-1)=2na
n(n-1)
2
=2n+
n(n-1)
2k-1

bn=
1
n
[n+
n(n-1)
2k-1
]=
n-1
2k-1
+1
(n=1,2,…,2k).
∵2k-1≥n-1
0 ≤
n-1
2k-1
≤ 1

   即1≤bn≤2;

(3)设bn
3
2
,解得n≤k+
1
2
,又n是正整数,于是当n≤k时,bn
3
2

当n≥k+1时,bn
3
2

原式=(
3
2
-b1)+(
3
2
-b2)+…+(
3
2
-bk)+(bk+1-
3
2
)+…+(b2k-
3
2

=(bk+1+…+b2k)-(b1+…+bk
=[
1
2
(k+2k-1)k
2k-1
+k]-[
1
2
(0+k-1)k
2k-1
+k]
=
k2
2k-1

k2
2k-1
≤4,得k2-8k+4≤0,4-2
3
≤k≤4+2
3
,又k≥2,
∴当k=2,3,4,5,6,7时,原不等式成立.
k的最大值为7.
点评:本题考查的是数列与不等式的综合类问题.在解答的过程当中充分体现了分类讨论的思想、对数运算的知识以及绝对值和解不等式的知识.值得同学们体会和反思.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网