题目内容
已知数列{an}中,a1=2,an+1=2an-n+2 |
n(n+1) |
(I)求证数列{an-
1 |
n |
(II)若bn=nan,求数列{bn}的前n项和Sn;
(III)求证:
1 |
a1-1 |
1 |
a2-1 |
1 |
an-1 |
分析:(I)由an+1=2an-
,可得an+1-
=2(an-
),所以可证数列{an-
}是以1为首项,2为公比的等比数列,进而可求数列{an}的通项公式;
(II)因为bn=nan=n•2n-1+1,所以Sn=b1+b2++bn=(1+2×21++n×2n-1)+n
记Tn=1+2×21++n×2n-1,于是2Tn=2+2×22++n×2n,错位相减得Tn=(n-1)×2n+1,从而可求数列{bn}的前n项和Sn;
(III)由an=2n-1+
知an≥2,a1=2,a2=
,当n≥2时,an+1=2an-
知an+1-1=2(an-1)+
> 2(an-1),从而有
<
(k=3.4,,n)进而可用放缩法转化为等比数列求和,故问题得证.
n+2 |
n(n+1) |
1 |
n+1 |
1 |
n |
1 |
n |
(II)因为bn=nan=n•2n-1+1,所以Sn=b1+b2++bn=(1+2×21++n×2n-1)+n
记Tn=1+2×21++n×2n-1,于是2Tn=2+2×22++n×2n,错位相减得Tn=(n-1)×2n+1,从而可求数列{bn}的前n项和Sn;
(III)由an=2n-1+
1 |
n |
5 |
2 |
n+2 |
n(n+1) |
n2-2 |
n(n+1) |
1 |
ak-1 |
1 |
2k-2 |
解答:证明:(I)∵an+1-
=2(an-
),∴数列{an-
}是以1为首项,2为公比的等比数列,∴an-
=2n-1,∴an=2n-1+
(II)∵bn=nan=n•2n-1+1,∴Sn=b1+b2++bn=(1+2×21++n×2n-1)+n
记∴Tn=1+2×21++n×2n-1,于是2Tn=2+2×22++n×2n,两式相减化简得Tn=(n-1)×2n+1,∴数列{bn}的前n项和Sn=(n-1)×2n+n+1;
(III)由an=2n-1+
知an≥2,a1=2,a2=
当n≥2时,an+1=2an-
知an+1-1=2(an-1)+
> 2(an-1),∴ak-1>2(ak-1-1)>>2k-2•
>2k-2即
<
(k=3.4,,n)
当n=1,2时,结论成立.
当n≥3时,
+
+…+
<1+
+
+
++
=
+
<
<3,∴
+
+…+
<3
1 |
n+1 |
1 |
n |
1 |
n |
1 |
n |
1 |
n |
(II)∵bn=nan=n•2n-1+1,∴Sn=b1+b2++bn=(1+2×21++n×2n-1)+n
记∴Tn=1+2×21++n×2n-1,于是2Tn=2+2×22++n×2n,两式相减化简得Tn=(n-1)×2n+1,∴数列{bn}的前n项和Sn=(n-1)×2n+n+1;
(III)由an=2n-1+
1 |
n |
5 |
2 |
当n≥2时,an+1=2an-
n+2 |
n(n+1) |
n2-2 |
n(n+1) |
3 |
2 |
1 |
ak-1 |
1 |
2k-2 |
当n=1,2时,结论成立.
当n≥3时,
1 |
a1-1 |
1 |
a2-1 |
1 |
an-1 |
2 |
3 |
1 |
2 |
1 |
22 |
1 |
2n-2 |
5 |
3 |
| ||||
1-
|
8 |
3 |
1 |
a1-1 |
1 |
a2-1 |
1 |
an-1 |
点评:本题考查等比、等差数列、不等式和数列的有关知识,化归、递推等数学思想方法,同时考查运算能力,推理论证以及综合运用有关知识分析解决问题的能力.
练习册系列答案
相关题目
已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为( )
A、
| ||
B、
| ||
C、
| ||
D、
|