题目内容

3.已知函数y=f(x)是R上的偶函数,当x1,x2∈(0,+∞)时,都有(x1-x2)•[f(x1)-f(x2)]<0.设$a=ln\frac{1}{π},b={({lnπ})^2},c=ln\sqrt{π}$,则(  )
A.f(a)>f(b)>f(c)B.f(b)>f(a)>f(c)C.f(c)>f(a)>f(b)D.f(c)>f(b)>f(a)

分析 根据已知条件便可判断f(x)在(0,+∞)上单调递减,f(x)是偶函数,所以f(x)=f(|x|),所以根据对数的运算,及对数的取值比较|a|,|b|,|c|的大小即可得出f(a),f(b),f(c)的大小关系.

解答 解:根据已知条件便知f(x)在(0,+∞)上是减函数;
且f(a)=f(|a|),f(b)=f(|b|),f(c)=f(|c|);
|a|=lnπ>1,b=(lnπ)2>|a|,c=$0<\frac{lnπ}{2}<|a|$;
∴f(c)>f(a)>f(b).
故选:C.

点评 考查偶函数的概念,函数单调性的定义,根据对数函数的单调性判断对数的取值情况,以及减函数定义的运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网