题目内容
3.已知函数y=f(x)是R上的偶函数,当x1,x2∈(0,+∞)时,都有(x1-x2)•[f(x1)-f(x2)]<0.设$a=ln\frac{1}{π},b={({lnπ})^2},c=ln\sqrt{π}$,则( )A. | f(a)>f(b)>f(c) | B. | f(b)>f(a)>f(c) | C. | f(c)>f(a)>f(b) | D. | f(c)>f(b)>f(a) |
分析 根据已知条件便可判断f(x)在(0,+∞)上单调递减,f(x)是偶函数,所以f(x)=f(|x|),所以根据对数的运算,及对数的取值比较|a|,|b|,|c|的大小即可得出f(a),f(b),f(c)的大小关系.
解答 解:根据已知条件便知f(x)在(0,+∞)上是减函数;
且f(a)=f(|a|),f(b)=f(|b|),f(c)=f(|c|);
|a|=lnπ>1,b=(lnπ)2>|a|,c=$0<\frac{lnπ}{2}<|a|$;
∴f(c)>f(a)>f(b).
故选:C.
点评 考查偶函数的概念,函数单调性的定义,根据对数函数的单调性判断对数的取值情况,以及减函数定义的运用.
练习册系列答案
相关题目
13.某村2014年的农业年生产总值为2000万元,在2015年中,大力推进绿色生态农业,预计以后每年的农业生产总值都比上一年增长10%,现设计了一个程序框图计算预计农业年生产总值首次超过3000万元的年份,那么图中的※处和最后输出的结果应是( )
A. | t=0.1a;2018 | B. | t=0.1a;2019 | C. | t=1.1a;2018 | D. | t=1.1a;2019 |
14.在复平面内,复数$\frac{7+i}{3+4i}$对应的点的坐标为( )
A. | (1,-1) | B. | (-1,1) | C. | $(\frac{17}{25},-1)$ | D. | $(\frac{17}{5},-1)$ |
18.已知复数z满足(1-i)z=i(i是虚数单位),则z在复平面内对应的点所在象限为( )
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
15.已知函数f(x)=sin(ωx+$\frac{π}{4}$)(ω>0)的最小正周期为π,则函数f(x)的图象( )
A. | 关于直线x=$\frac{π}{4}$对称 | B. | 关于直线x=$\frac{π}{8}$对称 | ||
C. | 关于点($\frac{π}{4}$,0)对称 | D. | 关于点($\frac{π}{8}$,0)对称 |
12.如果函数y=3sin(2x+φ)的图象关于直线x=$\frac{π}{6}$对称,则|φ|的最小值为( )
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |