题目内容
【题目】已知函数在与时都取得极值;
(1)求的值与函数的单调区间;
(2)若对,不等式恒成立,求的取值范围
【答案】(1)a=,b=-2,递增区间是(-,- )与(1,+)递减区间是(-,1)(2)c-1或c2
【解析】 试题分析:(1)根据极值定义得f()=0,f(1)=0,解方程组可得的值,再列表根据导函数符号确定单调区间(2)不等式恒成立问题一般转化为对应函数最值问题:f(x)最大值c2,根据(1)可得f(x)最大值为f(2),解不等式可得的取值范围
试题解析:解:(1)f(x)=x3+ax2+bx+c,f(x)=3x2+2ax+b
由f()=,f(1)=3+2a+b=0得
a=,b=-2
f(x)=3x2-x-2=(3x+2)(x-1),函数f(x)的单调区间如下表:
x | (-,- ) | - | (-,1) | 1 | (1,+) |
f(x) | + | 0 | - | 0 | |
f(x) | 极大值 | 极小值 |
所以函数f(x)的递增区间是(-,- )与(1,+)
递减区间是(-,1)
(2)f(x)=x3-x2-2x+c,x〔-1,2〕,当x=-时,f(x)=+c
为极大值,而f(2)=2+c,则f(2)=2+c为最大值。
要使f(x)c2(x〔-1,2〕)恒成立,只需c2f(2)=2+c
解得c-1或c2
【题目】小明同学在寒假社会实践活动中,对白天平均气温与某家奶茶店的品牌饮料销量之间的关系进行了分析研究,他分别记录了1月11日至1月15日的白天气温()与该奶茶店的品牌饮料销量(杯),得到如表数据:
日期 | 1月11号 | 1月12号 | 1月13号 | 1月14号 | 1月15号 |
平均气温() | 9 | 10 | 12 | 11 | 8 |
销量(杯) | 23 | 25 | 30 | 26 | 21 |
(1)若先从这五组数据中抽出2组,求抽出的2组数据恰好是相邻2天数据的概率;
(2)请根据所给五组数据,求出关于的线性回归方程式;
(3)根据(2)所得的线性回归方程,若天气预报1月16号的白天平均气温为,请预测该奶茶店这种饮料的销量.
(参考公式:,)