题目内容

设函数f(x)=x3+x,x∈R,若当0≤θ≤时,f(msinθ)+f(1-m)>0恒成立,则实数

 

m的取值范围是                                                                                        (    )

A.(0,1)                           B.(-∞,0)                 C.(-∞,)            D.(-∞,1)

 

 

【答案】

D

【解析】∵f(x)=x3+x是奇函数且是增函数.∴f(m·sinθ)+f(1-m)>0即f(msinθ)>f(m-1),

∴msinθ>m-1, θ=时,msinθ>m-1恒成立;0≤θ<时,m<.

 

≥1,∴m<1. θ=时,无意义. 故选D.

 

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网