题目内容
某大学2009届入学测试中,要求每位考生在10道题中随机抽出2道题回答.(I) 现在某位考生会答10道题中的6道,求这个考生答错题目个数的分布列和数学期望;
(II)若答对其中一题即为及格,如果某位考生及格的概率小于
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231338007602083/SYS201311012313380076020016_ST/0.png)
【答案】分析:(1)答错题目的个数ξ=0,1,2,然后根据等可能事件的概率公式求出相应的概率,列出分布列,最后根据数学期望公式求出所求;
(2)设该考生会x道题,不会10-x道题,然后根据某位考生及格的概率小于
建立不等式,解之即可求出所求.
解答:解:(1)答错题目的个数ξ=0,1,2
P(ξ=0)=
=
,P(ξ=1)=
=
,P(ξ=2)=
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231338007602083/SYS201311012313380076020016_DA/6.png)
∴分布列为:
期望Eξ=0×
+1×
+2×
=
(道题)…(7分)
(2)设该考生会x道题,不会10-x道题,则1-
<![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231338007602083/SYS201311012313380076020016_DA/15.png)
∴
…(10分)
解得:x<4或x>15(舍),故该考生最多会3道题…(13分)
点评:本题主要考查了等可能事件的概率,以及离散型随机变量及其分布列和数学期望,同时考查了计算能力,属于中档题.
(2)设该考生会x道题,不会10-x道题,然后根据某位考生及格的概率小于
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231338007602083/SYS201311012313380076020016_DA/0.png)
解答:解:(1)答错题目的个数ξ=0,1,2
P(ξ=0)=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231338007602083/SYS201311012313380076020016_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231338007602083/SYS201311012313380076020016_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231338007602083/SYS201311012313380076020016_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231338007602083/SYS201311012313380076020016_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231338007602083/SYS201311012313380076020016_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231338007602083/SYS201311012313380076020016_DA/6.png)
∴分布列为:
ξ | 0 | 1 | 2 |
P | ![]() | ![]() | ![]() |
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231338007602083/SYS201311012313380076020016_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231338007602083/SYS201311012313380076020016_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231338007602083/SYS201311012313380076020016_DA/12.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231338007602083/SYS201311012313380076020016_DA/13.png)
(2)设该考生会x道题,不会10-x道题,则1-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231338007602083/SYS201311012313380076020016_DA/14.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231338007602083/SYS201311012313380076020016_DA/15.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231338007602083/SYS201311012313380076020016_DA/16.png)
解得:x<4或x>15(舍),故该考生最多会3道题…(13分)
点评:本题主要考查了等可能事件的概率,以及离散型随机变量及其分布列和数学期望,同时考查了计算能力,属于中档题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目