题目内容
已知数列1,11,111,1111,,,,写出该数列的一个通项公式,并用反证法证明该数列中每一项都不是完全平方数.
数列的一个通项公式是
由于,所以该数列的一个通项公式是;
证明:假设是一个完全平方数,由于是一个奇数,所以它必须是一个奇数的平方,不妨设(为整数),于是.故此式中左边是奇数,右边是偶数,自相矛盾,所以不是一个完全平方数.
证明:假设是一个完全平方数,由于是一个奇数,所以它必须是一个奇数的平方,不妨设(为整数),于是.故此式中左边是奇数,右边是偶数,自相矛盾,所以不是一个完全平方数.
练习册系列答案
相关题目