题目内容
侧棱长为a的正三棱锥P-ABC的侧面都是直角三角形,且四个顶点都在一个球面上,则该球的表面积为( )A.
B.2πa2
C.
D.3πa2
【答案】分析:侧棱长为a的正三棱锥P-ABC的侧面都是直角三角形,且四个顶点都在一个球面上,说明三棱锥的正方体的一个角,把三棱锥扩展为正方体,它们有相同的外接球,球的直径就是正方体的对角线,求出直径,即可求出球的表面积.
解答:解:因为侧棱长为a的正三棱锥P-ABC的侧面都是直角三角形,且四个顶点都在一个球面上,三棱锥的正方体的一个角,把三棱锥扩展为正方体,它们有相同的外接球,球的直径就是正方体的对角线,正方体的对角线长为:;
所以球的表面积为:4π=3πa2
故选D
点评:本题是基础题,考查三棱锥的外接球的表面积的求法,三棱锥扩展为正方体是本题的关键,正方体的对角线是外接球的直径也不容忽视,考查计算能力.
解答:解:因为侧棱长为a的正三棱锥P-ABC的侧面都是直角三角形,且四个顶点都在一个球面上,三棱锥的正方体的一个角,把三棱锥扩展为正方体,它们有相同的外接球,球的直径就是正方体的对角线,正方体的对角线长为:;
所以球的表面积为:4π=3πa2
故选D
点评:本题是基础题,考查三棱锥的外接球的表面积的求法,三棱锥扩展为正方体是本题的关键,正方体的对角线是外接球的直径也不容忽视,考查计算能力.
练习册系列答案
相关题目
侧棱长为a的正三棱锥P-ABC的侧面都是直角三角形,且四个顶点都在一个球面上,则该球的表面积为( )
A、
| ||
B、2πa2 | ||
C、
| ||
D、3πa2 |