题目内容
(16分)设{an}是等差数列,其前n项的和为Sn.
(1)求证:数列为等差数列;
(2)设{an}各项为正数,a1=,a1≠a2,若存在互异正整数m,n,p满足:①m+p=2n;
②. 求集合的元素个数;
(3)设bn=(a为常数,a>0,a≠1,a1≠a2),数列{bn}前n项和为Tn. 对于正整数c,
d,e,f,若c<d<e<f,且c+f=d+e, 试比较(Tc)-1+(Tf)-1与(Td)-1+(Te)-1的大小.解析:【证】(1){an}为等差数列,设其公差为,则
,于是(常数),
故数列是等差数列. …………………………3分
【解】(2)因为{an}为等差数列,所以是等差数列,
于是可设为常数),从而.
因为m+p=2n,所以由两边平方得
,即,
亦即,………………………4分
于是,两边平方并整理得,即.
…………………………6分
因为m≠p,所以,从而,而a1=,所以.
故. …………………………7分
所以
.
因为15有4个正约数,所以数对(x,y)的个数为4个.
即集合中的元素个数为4. ………………………9分
(3)因为(常数),
所以数列{bn}是正项等比数列.
因为a1≠a2,所以等比数列{bn}的公比q≠1. ………………………10分
(解法一) ①
. ②
因为,所以要证②,只要证, ③…………………13分
而③
. ④
④显然成立,所以③成立,从而有.…………………16分
(解法二)注意到当n>m时,. ……………………12分
于是
. ……………………14分
而,故. ……………………16分
(注:第(3)问只写出正确结论的,给1分)
练习册系列答案
相关题目
设{an}是等差数列,a1+a3+a5=9,a6=9.则这个数列的前6项和等于( )
A、12 | B、24 | C、36 | D、48 |