ÌâÄ¿ÄÚÈÝ
ijµØÇøµÄÒ»ÖÖÌØÉ«Ë®¹ûÉÏÊÐʱ¼äÄܳÖÐø5¸öÔ£¬Ô¤²âÉÏÊгõÆںͺóÆÚ»áÒò¹©²»Ó¦Çóʹ¼Û¸ñ³ÊÁ¬ÐøÉÏÕÇ̬ÊÆ£¬¶øÖÐÆÚÓÖ½«³öÏÖ¹©´óÓÚÇóʹ¼Û¸ñÁ¬Ðøϵø£¬ÏÖÓÐÈýÖÖ¼Û¸ñÄ£Ä⺯Êý£º¢Ùf£¨x£©=p•qx£»¢Úf£¨x£©=logqx+p£»¢Ûf£¨x£©=£¨x-1£©£¨x-q£©2+p£¨ÒÔÉÏÈýʽÖÐp¡¢q¾ùΪ³£Êý£¬ÇÒq£¾2£©£®
£¨1£©Îª×¼È·Ñо¿Æä¼Û¸ñ×ßÊÆ£¬Ó¦Ñ¡ÄÄÖÖ¼Û¸ñÄ£Ä⺯Êý£¬ÎªÊ²Ã´£¿
£¨2£©Èôf£¨1£©=4£¬f£¨3£©=6£¬¢ÙÇó³öËùÑ¡º¯Êýf£¨x£©µÄ½âÎöʽ£¨×¢£ºº¯ÊýµÄ¶¨ÒåÓòÊÇ[1£¬6]£®ÆäÖÐx=1±íʾ4ÔÂ1ÈÕ£¬x=2±íʾ5ÔÂ1ÈÕ£¬¡£¬ÒÔ´ËÀàÍÆ£©£»¢ÚΪ±£Ö¤¹ûÅ©µÄÊÕÒ棬´òËãÔÚ¼Û¸ñϵøÆÚ¼ä»ý¼«ÍØ¿íÍâÏú£¬ÇëÄãÔ¤²â¸ÃË®¹ûÔÚÄļ¸¸öÔÂÄÚ¼Û¸ñϵø£®
£¨1£©Îª×¼È·Ñо¿Æä¼Û¸ñ×ßÊÆ£¬Ó¦Ñ¡ÄÄÖÖ¼Û¸ñÄ£Ä⺯Êý£¬ÎªÊ²Ã´£¿
£¨2£©Èôf£¨1£©=4£¬f£¨3£©=6£¬¢ÙÇó³öËùÑ¡º¯Êýf£¨x£©µÄ½âÎöʽ£¨×¢£ºº¯ÊýµÄ¶¨ÒåÓòÊÇ[1£¬6]£®ÆäÖÐx=1±íʾ4ÔÂ1ÈÕ£¬x=2±íʾ5ÔÂ1ÈÕ£¬¡£¬ÒÔ´ËÀàÍÆ£©£»¢ÚΪ±£Ö¤¹ûÅ©µÄÊÕÒ棬´òËãÔÚ¼Û¸ñϵøÆÚ¼ä»ý¼«ÍØ¿íÍâÏú£¬ÇëÄãÔ¤²â¸ÃË®¹ûÔÚÄļ¸¸öÔÂÄÚ¼Û¸ñϵø£®
£¨1£©ÒòΪf£¨x£©=pqx£¬f£¨x£©=logqx+qÊǵ¥µ÷º¯Êý£¬f£¨x£©=£¨x-1£©£¨x-q£©2+qÖУ¬
f¡ä£¨x£©=3x2-£¨4q+2£©+q2+2q£¬Áîf¡ä£¨x£©=0£¬µÃx=q£¬x=
£¬f£¨x£©ÓÐÁ½¸öÁãµã£¬¿ÉÒÔ³öÏÖÁ½¸öµÝÔöÇø¼äºÍÒ»¸öµÝ¼õÇø¼ä£¬ËùÒÔӦѡf£¨x£©=£¨x-1£©£¨x-q£©2+pΪÆä³É¼¨Ä£Ä⺯Êý£®
£¨2£©£¨1£©ÓÉf£¨1£©=4£¬f£¨3£©=6£¬µÃ
+p=6µÃ
f£¨x£©=x3+9x2+24x-12£¨1¡Üx¡Ü12£¬ÇÒx¡ÊZ£©£®
£¨2£©ÓÉf¡ä£¨x£©=3x2+18x+24£¼0µÃ£º5¡Üx¡Ü6£¬
Ô¤²â¸Ã¹ûÆ·ÔÚ5¡¢6Ô·ÝÄÚ¼Û¸ñϵø£®
f¡ä£¨x£©=3x2-£¨4q+2£©+q2+2q£¬Áîf¡ä£¨x£©=0£¬µÃx=q£¬x=
q+2 |
3 |
£¨2£©£¨1£©ÓÉf£¨1£©=4£¬f£¨3£©=6£¬µÃ
|
|
f£¨x£©=x3+9x2+24x-12£¨1¡Üx¡Ü12£¬ÇÒx¡ÊZ£©£®
£¨2£©ÓÉf¡ä£¨x£©=3x2+18x+24£¼0µÃ£º5¡Üx¡Ü6£¬
Ô¤²â¸Ã¹ûÆ·ÔÚ5¡¢6Ô·ÝÄÚ¼Û¸ñϵø£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ijµØÇøµÄÒ»ÖÖÌØÉ«Ë®¹ûÉÏÊÐʱ¼ä½öÄܳÖÐø¼¸¸öÔ£¬Ô¤²âÉÏÊгõÆںͺóÆÚ»áÒò¹©²»Ó¦Çóʹ¼Û¸ñ³ÊÁ¬ÐøÉÏÕǵÄ̬ÊÆ£¬¶øÖÐÆÚÓÖ½«³öÏÖ¹©´óÓÚÇóʹ¼Û¸ñÁ¬Ðøϵø£¬Îª×¼È·Ñо¿Æä¼Û¸ñ×ßÊÆ£¬ÏÂÃæ¸ø³öËĸö¼Û¸ñÄ£Ä⺯ÊýÖÐÊʺϵÄÊÇ£¨ÆäÖÐΪp¡¢q³£Êý£¬0£¼q£¼4£¬ÇÒx¡Ê£¨0£¬5£©£©£¨¡¡¡¡£©
A¡¢f£¨x£©=p•qx | B¡¢f£¨x£©=px2+qx+1 | C¡¢f£¨x£©=plnx+qx2 | D¡¢f£¨x£©=x£¨x-q£©2+p |