题目内容
(14分)己知函数f (x)=ex,xR
(1)求 f (x)的反函数图象上点(1,0)处的切线方程。
(2)证明:曲线y=f(x)与曲线y=有唯一公共点;
(3)设,比较与的大小,并说明理由。
【答案】
(1) ;(2) 详见解析;(3) .
【解析】
试题分析:(1)f (x)的反函数. 直线y=kx+1恒过点P(0,1),该题即为过某点与曲线相切的问题,这类题一定要先设出切点的坐标,然后求导便可得方程组,解方程组即可得k的值.
(2)曲线y=f(x)与曲线 的公共点个数即方程 根的个数. 而这个方程可化为
,令,结合的图象即可知道取不同值时,方程的根的个数.
(3) 比较两个式子的大小的一般方法是用比较法,即作差,变形,判断符号.
结合这个式子的特征可看出,我们可研究函数的函数值的符号,而用导数即可解决.
试题解析:(1) f (x)的反函数为. ,,所以过点的切线为: . 4分
(2) 令,则,当时 ,当时,,所以在R上单调递增.又,所以 有且只有一个零点,即曲线与有唯一一个公共点.8分
(3) 设
9分
令,则,
的导函数,所以在上单调递增,且,因此,在上单调递增,而,所以在上. 12分
当时,且即,
所以当时, 14分
考点:1、导数的应用;2、方程的根;3、比较大小.
练习册系列答案
相关题目