题目内容
求圆心在抛物线x2=4y上,且与直线x+2y+1=0相切的面积最小的圆的方程.
(x+1)2+=
解析
在直角坐标系中,以为圆心的圆与直线相切,求圆的方程.
若方程ax2+ay2-4(a-1)x+4y=0表示圆,求实数a的取值范围,并求出半径最小的圆的方程.
已知圆O1的方程为x2+(y+1)2=6,圆O2的圆心坐标为(2,1).若两圆相交于A,B两点,且|AB|=4,求圆O2的方程.
AB是圆O的直径,D为圆O上一点,过D作圆O的切线交AB延长线于点C,若DA=DC,求证:AB=2BC.
在平面直角坐标系xOy中,曲线y=x2-6x+1与坐标轴的交点都在圆C上.(1)求圆C的方程;(2)若圆C与直线x-y+a=0交于A,B两点,且OA⊥OB,求a的值.
已知动圆与直线相切且与圆:外切。(1)求圆心的轨迹方程;(2)过定点作直线交轨迹于两点,是点关于坐标原点的对称点,求证:;
已知圆C:x2+y2+x-6y+m=0与直线l:x+2y-3=0.(1)若直线l与圆C没有公共点,求m的取值范围;(2)若直线l与圆C相交于P、Q两点,O为原点,且OP⊥OQ,求实数m的值.
如图,圆O与离心率为的椭圆T:()相切于点M。⑴求椭圆T与圆O的方程;⑵过点M引两条互相垂直的两直线、与两曲线分别交于点A、C与点B、D(均不重合)。①若P为椭圆上任一点,记点P到两直线的距离分别为、,求的最大值;②若,求与的方程。