题目内容
如图,一块曲线部分是抛物线形的钢板,其底边长为2,高为1,将此钢板切割成等腰梯形的形状,记CD=2x,梯形面积为S.则S的最大值是 .![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104514236809706/SYS201311031045142368097012_ST/images0.png)
【答案】分析:建立坐标系,求出抛物线的方程,进而可求梯形的高,从而可求梯形的面积,利用基本不等式即可求得最大值.
解答:解:建立如图所示的坐标系,设抛物线的标准方程为x2=-2py(p>0)![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104514236809706/SYS201311031045142368097012_DA/images0.png)
则B(1,-1),代入抛物线方程可得2p=1,∴抛物线方程为x2=-y
∵CD=2x,∴D(x,-x2)
∴梯形的高为1-x2,梯形的面积为S=(x+1)(1-x2),x∈(0,1)
S=(x+1)(1-x2)=
(x+1)2(2-2x)≤
×
=
,
当且仅当x+1=2-2x,即x=
时,S的最大值是![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104514236809706/SYS201311031045142368097012_DA/5.png)
故答案为:![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104514236809706/SYS201311031045142368097012_DA/6.png)
点评:本题考查函数模型的构建,考查抛物线方程,考查函数的最值,确定梯形的高是关键.
解答:解:建立如图所示的坐标系,设抛物线的标准方程为x2=-2py(p>0)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104514236809706/SYS201311031045142368097012_DA/images0.png)
则B(1,-1),代入抛物线方程可得2p=1,∴抛物线方程为x2=-y
∵CD=2x,∴D(x,-x2)
∴梯形的高为1-x2,梯形的面积为S=(x+1)(1-x2),x∈(0,1)
S=(x+1)(1-x2)=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104514236809706/SYS201311031045142368097012_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104514236809706/SYS201311031045142368097012_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104514236809706/SYS201311031045142368097012_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104514236809706/SYS201311031045142368097012_DA/3.png)
当且仅当x+1=2-2x,即x=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104514236809706/SYS201311031045142368097012_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104514236809706/SYS201311031045142368097012_DA/5.png)
故答案为:
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103104514236809706/SYS201311031045142368097012_DA/6.png)
点评:本题考查函数模型的构建,考查抛物线方程,考查函数的最值,确定梯形的高是关键.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目