题目内容
(2009•奉贤区二模)关于函数f(x)=xarcsin2x有下列命题:①f(x)的定义域是R;②f(x)是偶函数;③f(x)在定义域内是增函数;④f(x)的最大值是
,最小值是0.其中正确的命题是
π | 4 |
②④
②④
.(写出你所认为正确的所有命题序号)分析:对于①-1≤2x≤1,∴函数的定义域不可能为R;对于②两个奇函数乘积偶函数;对于③由于是偶函数,则f(x)在定义域内不可能单调;对于④左边单减,右边单增,故可得结论.
解答:解:对于①-1≤2x≤1,∴函数的定义域不可能为R,故①错误;
对于②f(-x)=f(x),两个奇函数乘积偶函数,∴为偶函数,故②正确;
对于③由于是偶函数,则f(x)在定义域内不可能单调,故③错误;
对于④左边单减,右边单增,∴f(x)的最大值是
,最小值是0,故④正确.
故正确答案为②④
对于②f(-x)=f(x),两个奇函数乘积偶函数,∴为偶函数,故②正确;
对于③由于是偶函数,则f(x)在定义域内不可能单调,故③错误;
对于④左边单减,右边单增,∴f(x)的最大值是
π |
4 |
故正确答案为②④
点评:本题的考点是反三角函数的运用,主要考查反三角函数的性质,定义域,单调性,奇偶性,最值等,有一定的综合性
练习册系列答案
相关题目