题目内容

【题目】已知椭圆的左.右焦点为,离心率为.直线轴,轴分别交于点是直线与椭圆的一个公共点,是点关于直线的对称点,设.

1)证明:

2)若的周长为;写出椭圆的方程;

3)确定的值,使得是等腰三角形.

【答案】1)证明见解析;(2;(3)当时,是等腰三角形

【解析】

1)分别求出坐标,利用向量共线的坐标运算可构造关于的方程,整理即可证得结果;(2)利用(1)的结论求得,根据焦点三角形周长为可得到关于方程,求得后,根据求得,进而得到椭圆方程;(3)根据可知若为等腰三角形,则需,即点到直线距离,利用点到直线距离公式构造方程可求得,根据(1)的结论得到结果.

1轴的交点

得:,即

,整理可得:

2)由(1)得:,解得:,即

周长为,即

椭圆的方程为:

3 为钝角

是等腰三角形,则

到直线距离为,则需

,即,解得:

由(1)得:

时,是等腰三角形

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网