题目内容
(09年海淀区二模理)(14分)已知定义域为,满足:
①;
②对任意实数,有.
(Ⅰ)求,的值;
(Ⅱ)求的值;
(Ⅲ)是否存在常数,使得不等式对一切实数成立.如果存在,求出常数的值;如果不存在,请说明理由.解析:(Ⅰ)取,得,即.
因为,所以. ………………………………………1分
取,得.因为,所以.
取,得,所以.
…………………………………3分
(Ⅱ)在中取得.
所以.
在中取,得.
在中取,
得.
所以.
在中取,
得.
所以.
在中取,
得
.
所以对任意实数均成立.
所以. ………………………………9分
(Ⅲ)由(Ⅱ)知,
在中,
取,得,即 ①
取,得 ②
取,得,即 ③
②+①得,②+③得.
.
将代入①得.
将代入②得.
.
由(Ⅱ)知,所以对一切实数成立.
故当时,对一切实数成立.
存在常数,使得不等式对一切实数成立,且为满足题设的唯一一组值. ………………………………………14分
说明:其它正确解法按相应步骤给分.
练习册系列答案
相关题目