题目内容

已知函数,过点P(1,0)作曲线y=f(x)的两条切线PM、PN,切点分别为M、N.

(1)当t=2时,求函数f(x)的单调递增区间;

(2)设|MN|=g(t),试求函数g(t)的表达式

(3)在(2)的条件下,若对任意的正整数n,在区间[]内总存在m+1个实数a1,a2,…,am,am+1,使得不等式g(a1)+g(a2)+…+g(am)<g(am+1)成立,求m的最大值.

答案:
解析:

  解:(1)  4分

  (2)令 

  

  同理,由PN方程得于是,可视为方程的两根

  

    10分

  (3)

  注意到恒成立

     14分


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网