题目内容

16.已知两点M(-1,0),N(1,0),若直线y=k(x-2)上至少存在三个点P,使得△MNP是直角三角形,则实数k的取值范围是(  )
A.[-5,5]B.[-$\frac{1}{3}$,$\frac{1}{3}$]C.[-$\frac{1}{3}$,0)∪(0,$\frac{1}{3}$]D.[-$\frac{\sqrt{3}}{3}$,0)∪(0,$\frac{\sqrt{3}}{3}$]

分析 k=0时,M、N、P三点共线,构不成三角形,故k≠0,然后分三种情况分析,即∠PMN,∠PNM,∠MPN为直角,若△MNP是直角三角形,由直径对的圆周角是直角,知直线和以MN为直径的圆有公共点即可,由此能求出实数k的取值范围.

解答 解:当k=0时,M、N、P三点共线,构不成三角形,
∴k≠0,
如图所示,
△MNP是直角三角形,有三种情况:
当M是直角顶点时,直线上有唯一点P1点满足条件;
当N是直角顶点时,直线上有唯一点P3满足条件;
当P是直角顶点时,此时至少有一个点P满足条件.
由直径对的圆周角是直角,知直线和以MN为直径的圆有公共点即可,
则$\frac{|2k|}{\sqrt{{k}^{2}+1}}≤1$,解得-$\frac{\sqrt{3}}{3}≤k≤\frac{\sqrt{3}}{3}$,且k≠0.
∴实数k的取值范围是[-$\frac{\sqrt{3}}{3},0$)∪(0,$\frac{\sqrt{3}}{3}$].
故选:D.

点评 本题考查直线与圆的位置关系,考查数形结合及分类讨论的数学思想方法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网