题目内容
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221406462609912/SYS201311012214064626099009_ST/images0.png)
A.{x|-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221406462609912/SYS201311012214064626099009_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221406462609912/SYS201311012214064626099009_ST/1.png)
B.{x|-1<x<-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221406462609912/SYS201311012214064626099009_ST/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221406462609912/SYS201311012214064626099009_ST/3.png)
C.{x|-1<x<-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221406462609912/SYS201311012214064626099009_ST/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221406462609912/SYS201311012214064626099009_ST/5.png)
D.{x|-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221406462609912/SYS201311012214064626099009_ST/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221406462609912/SYS201311012214064626099009_ST/7.png)
【答案】分析:本题考查的是函数的图象与图象变化问题.在解答时,应充分观察图形分析函数性质:奇偶性,将所求不等式化简,在集合自变量的不同范围分类讨论即可获得相应的不等式,进而获得问题的解答.
解答:解:由图象可知,该函数f(x)为奇函数,故原不等式可等价转化为f(x)<
x,
当x=1时,f(x)=0<
,显然成立,
当0<x<1时,f(x)=
,
∴1-x2<
x2,
∴
<x<1.
当-1≤x<0时,-
<
x,
∴1-x2>
x2,
∴-
<x<0.
综上所述,不等式f(x)<f(-x)+x的解集为
{x|-
<x<0或
<x≤1}.
故选:A.
点评:本题考查的是函数的图象与图象变化问题.在解答过程当中充分体现了数形结合的思想、分类讨论的思想以及问题转化的思想.值得同学们体会反思.
解答:解:由图象可知,该函数f(x)为奇函数,故原不等式可等价转化为f(x)<
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221406462609912/SYS201311012214064626099009_DA/0.png)
当x=1时,f(x)=0<
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221406462609912/SYS201311012214064626099009_DA/1.png)
当0<x<1时,f(x)=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221406462609912/SYS201311012214064626099009_DA/2.png)
∴1-x2<
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221406462609912/SYS201311012214064626099009_DA/3.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221406462609912/SYS201311012214064626099009_DA/4.png)
当-1≤x<0时,-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221406462609912/SYS201311012214064626099009_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221406462609912/SYS201311012214064626099009_DA/6.png)
∴1-x2>
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221406462609912/SYS201311012214064626099009_DA/7.png)
∴-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221406462609912/SYS201311012214064626099009_DA/8.png)
综上所述,不等式f(x)<f(-x)+x的解集为
{x|-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221406462609912/SYS201311012214064626099009_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221406462609912/SYS201311012214064626099009_DA/10.png)
故选:A.
点评:本题考查的是函数的图象与图象变化问题.在解答过程当中充分体现了数形结合的思想、分类讨论的思想以及问题转化的思想.值得同学们体会反思.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目