题目内容
【题目】设抛物线的焦点为,准线为,为过焦点且垂直于轴的抛物线的弦,已知以为直径的圆经过点.
(1)求的值及该圆的方程;
(2)设为上任意一点,过点作的切线,切点为,证明:.
【答案】(1),圆的方程为:.(2)答案见解析
【解析】
(1)根据题意,可知点的坐标为,即可求出的值,即可求出该圆的方程;
(2)由题易知,直线的斜率存在且不为0,设的方程为,与抛物线联立方程组,根据,求得,化简解得,进而求得点的坐标为,分别求出,,利用向量的数量积为0,即可证出.
解:(1)易知点的坐标为,
所以,解得.
又圆的圆心为,
所以圆的方程为.
(2)证明易知,直线的斜率存在且不为0,
设的方程为,
代入的方程,得.
令,得,
所以,解得.
将代入的方程,得,即点的坐标为.
所以,,
.
故.
练习册系列答案
相关题目