题目内容
14、由数字1,2,3,4,5组成没有重复数字且数字1与2不相邻的五位数,求这种五位数的个数.
分析:由题意知组成没有重复数字且数字1与2不相邻的五位数,可以采用插空法,,首先将除去1和2的三个数字全排列,再在这三个数字形成的四个空上选两个位置排列1和2,再用分步乘法得到结果.
解答:解:由题意知组成没有重复数字且数字1与2不相邻的五位数,可以采用插空法,
首先将除去1和2的三个数字全排列,有A33种结果,
再在这三个数字形成的四个空上选两个位置排列1和2,共有A42种结果
根据分步计数原理知共有A33A42=72种结果,
首先将除去1和2的三个数字全排列,有A33种结果,
再在这三个数字形成的四个空上选两个位置排列1和2,共有A42种结果
根据分步计数原理知共有A33A42=72种结果,
点评:本题是一个简单计数问题,解题过程中要用到排列和分步计数原理,数字问题是计数中经常出现的题目,可以借助于排列数和组合数来表示.
练习册系列答案
相关题目