题目内容
17、已知数列{an}前n项和为Sn且2an-Sn=2(n∈N*).
(Ⅰ)求{an}的通项公式;
(Ⅱ)若数列{bn}满足b1=1,且bn+1=bn+an(n≥1),求{bn}通项公式及前n项和Tn.
(Ⅰ)求{an}的通项公式;
(Ⅱ)若数列{bn}满足b1=1,且bn+1=bn+an(n≥1),求{bn}通项公式及前n项和Tn.
分析:(Ⅰ)由题意知2an+1-2an-(Sn+1-Sn)=0.所以an+1=2an.再由2a1-S1=2知an}是以2为首项,2为公比的等比数列,由此可知{an}的通项公式.
(Ⅱ)由题意知bn+1-bn=2n,所以b2-b1=2,b3-b2=22,b4-b3=23,,bn-bn-1=2n-1,故bn=2n-1,由此可知Tn=(2+22++2n-1+2n)-n=2n+1-(n+2).
(Ⅱ)由题意知bn+1-bn=2n,所以b2-b1=2,b3-b2=22,b4-b3=23,,bn-bn-1=2n-1,故bn=2n-1,由此可知Tn=(2+22++2n-1+2n)-n=2n+1-(n+2).
解答:解:(Ⅰ)∵2an-Sn=2,∴2an+1-Sn+1=2
两式相减得2an+1-2an-(Sn+1-Sn)=0.∴an+1=2an.
又n=1时,2a1-S1=2.∴a1=2
∴{an}是以2为首项,2为公比的等比数列(3分)
∴an=a1qn-1=2•2n-1=2n(6分)
(Ⅱ)∵bn+1=bn+an,∴bn+1-bn=2n(8分)
∴b2-b1=2,b3-b2=22,b4-b3=23,,bn-bn-1=2n-1
相加,bn-b1=2+22+23++2n-1,∵b1=1,
∴bn=1+2+22++2n-1=2n-1)
即bn=2n-1(12分)
∴Tn=(2+22++2n-1+2n)-n=2n+1-(n+2)(14分)
两式相减得2an+1-2an-(Sn+1-Sn)=0.∴an+1=2an.
又n=1时,2a1-S1=2.∴a1=2
∴{an}是以2为首项,2为公比的等比数列(3分)
∴an=a1qn-1=2•2n-1=2n(6分)
(Ⅱ)∵bn+1=bn+an,∴bn+1-bn=2n(8分)
∴b2-b1=2,b3-b2=22,b4-b3=23,,bn-bn-1=2n-1
相加,bn-b1=2+22+23++2n-1,∵b1=1,
∴bn=1+2+22++2n-1=2n-1)
即bn=2n-1(12分)
∴Tn=(2+22++2n-1+2n)-n=2n+1-(n+2)(14分)
点评:本题考查数列的性质和综合运用,难度较大,解题时要认真审题,仔细解答,注意公式的灵活运用.
练习册系列答案
相关题目