题目内容

已知数列{an}是由正数构成的数列,a1=3,且满足lgan=lgan-1+lgc,其中n是大于1的整数,c是正数.
(1)求数列{an}的通项公式及前n和Sn
(2)求
lim
n→∞
2n-1-an
2n+an+1
的值.
分析:(1)由已知得an=3•cn-1.由此可知Sn=
3n                                    (c=1)
3(1-cn)
1-c
                           (c>0且c≠1).

(2)
lim
n→∞
2n-1-an
2n+an+1
=
lim
n→∞
2n-1-3cn-1
2n+3cn
.再由c的取值范围分别讨论
lim
n→∞
2n-1-an
2n+an+1
的值.
解答:解:(1)由已知得an=c•an-1
∴{an}是以a1=3,公比为c的等比数列,则an=3•cn-1
∴Sn=
3n                                    (c=1)
3(1-cn)
1-c
                           (c>0且c≠1).

(2)
lim
n→∞
2n-1-an
2n+an+1
=
lim
n→∞
2n-1-3cn-1
2n+3cn

①当c=2时,原式=-
1
4

②当c>2时,原式=
lim
n→∞
(
2
c
)
n-1
-3
2•(
2
c
)
n-1
+3c
=-
1
c

③当0<c<2时,原式=
lim
n→∞
1-3(
c
2
)
n-1
2+3c•(
c
2
)
n-1
=
1
2
点评:求数列极限时要注意分类讨论思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网