题目内容
【题目】已知数列满足,,其中是等差数列,且,则________.
【答案】2018
【解析】
数列{an}、{bn}满足bn=lnan,n∈N*,其中{bn}是等差数列,可得bn+1﹣bn=lnan+1﹣lnan=ln常数t.常数et=q>0,因此数列{an}为等比数列.由,
可得a1a1009=a2a1008.再利用对数运算性质即可得出.
解:数列{an}、{bn}满足bn=lnan,n∈N*,其中{bn}是等差数列,
∴bn+1﹣bn=lnan+1﹣lnan=ln常数t.
∴常数et=q>0,
因此数列{an}为等比数列.
且,
∴a1a1009=a2a1008.
则b1+b2+…+b1009=ln(a1a2…a1009)lne2018=2018.
故答案为:2018.
练习册系列答案
相关题目