题目内容

13.已知定义在R上的奇函数f(x)的图象关于直线x=1对称,f(-1)=1,则f(1)+f(2)+f(3)+…+f(2015)的值为(  )
A.-1B.0C.1D.2

分析 先由图象关于直线x=1对称得f(2-x)=f(x),再与奇函数条件结合起来,有f(x+4)=f(x),得f(x)是以4为周期的周期函数再求解.

解答 解:∵图象关于直线x=1对称,∴f(2-x)=f(x),
∵f(x)是奇函数,∴f(-x)=-f(x),
f(2+x)=-f(x),∴f(x+4)=f(x),∴f(x)是以4为周期的周期函数.
∵f(1)=-1,f(2)=-f(0)=0,f(3)=f(2+1)=-f(1)=1,f(4)=f(4+0)=f(0)=0,
∴f(1)+f(2)+f(3)+f(4)=0,
∴f(1)+f(2)+f(3)+…+f(2015)=f(1)+f(2)+f(3)=0,
故选:B.

点评 本题主要考查函数的奇偶性和对称性以及性质间的结合与转化,如本题周期性就是由奇偶性和对称性结合转化而来的,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网