题目内容
已知函数f(x)=
,若数列{an}(n∈N*)满足:a1=1,an+1=f(an)
(1)求数列{an}的通项公式;
(2)设数列{cn}满足:cn=
,求数列{cn}的前n项的和Sn.
x |
x+1 |
(1)求数列{an}的通项公式;
(2)设数列{cn}满足:cn=
2n |
an |
分析:(1)由f(x)=
,知an+1=f(an)=
=
,由此求出
-
=1,从而得到数列{an}的通项公式.
(2)由cn=
=
=n2n,知sn=1×2+2×22+…+n2n,再由错位相减法能够求出数列{cn}的前n项的和Sn.
x |
x+1 |
an |
an+1 |
1 | ||
|
1 |
an+1 |
1 |
an |
(2)由cn=
2n |
an |
2n | ||
|
解答:解:(1)∵f(x)=
,
∴an+1=f(an)=
=
∴
-
=1,
设bn=
,
∴bn+1-bn=1,b1=
=1,
∴{bn}是等差数列,
∴bn=
=n,
∴an=
.
(2)cn=
=
=n2n,
∴sn=1×2+2×22+…+n2n
2sn=1×22+2×23+…+(n-1)2n+n2n+1
∴2Sn-Sn=Sn=-2-22-23…-2n+n2n+1=-
+n2n+1
=(n-1)2n+1+2.
x |
x+1 |
∴an+1=f(an)=
an |
an+1 |
1 | ||
|
∴
1 |
an+1 |
1 |
an |
设bn=
1 |
an |
∴bn+1-bn=1,b1=
1 |
a1 |
∴{bn}是等差数列,
∴bn=
1 |
an |
∴an=
1 |
n |
(2)cn=
2n |
an |
2n | ||
|
∴sn=1×2+2×22+…+n2n
2sn=1×22+2×23+…+(n-1)2n+n2n+1
∴2Sn-Sn=Sn=-2-22-23…-2n+n2n+1=-
2(1-2n) |
1-2 |
=(n-1)2n+1+2.
点评:本题考查数列的通项公式的求法和数列的前n项和公式的求法,解题时要认真审题,仔细解答,注意合理裂项求和法的合理运用.
练习册系列答案
相关题目