题目内容

已知函数f(x)=
x
x+1
,若数列{an}(n∈N*)满足:a1=1,an+1=f(an
(1)求数列{an}的通项公式;
(2)设数列{cn}满足:cn=
2n
an
,求数列{cn}的前n项的和Sn
分析:(1)由f(x)=
x
x+1
,知an+1=f(an)=
an
an+1
=
1
1
an
+1
,由此求出
1
an+1
-
1
an
=1
,从而得到数列{an}的通项公式.
(2)由cn=
2n
an
=
2n
1
n
=n2n
,知sn=1×2+2×22+…+n2n,再由错位相减法能够求出数列{cn}的前n项的和Sn
解答:解:(1)∵f(x)=
x
x+1

an+1=f(an)=
an
an+1
=
1
1
an
+1

1
an+1
-
1
an
=1

bn=
1
an

∴bn+1-bn=1,b1=
1
a1
=1

∴{bn}是等差数列,
bn=
1
an
=n

an=
1
n

(2)cn=
2n
an
=
2n
1
n
=n2n

∴sn=1×2+2×22+…+n2n
2sn=1×22+2×23+…+(n-1)2n+n2n+1
2Sn-Sn=Sn=-2-22-23…-2n+n2n+1=-
2(1-2n)
1-2
+n2n+1

=(n-1)2n+1+2.
点评:本题考查数列的通项公式的求法和数列的前n项和公式的求法,解题时要认真审题,仔细解答,注意合理裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网