题目内容

1.用二项式定理证明:1110-1能被100整除.

分析 利用1110=(10+1)10展开式进行证明即可.

解答 证明:1110-1=(10+1)10-1=(1010+${C}_{10}^{1}$•109+…+${C}_{10}^{9}$•10+1)-1=1010+${C}_{10}^{1}$•109+${C}_{10}^{2}$•108+…+102
=100(108+${C}_{10}^{1}$•107+${C}_{10}^{2}$•106+…+1).
∴1110-1能被100整除.

点评 利用二项式定理可以求余数和整除性问题,通常需将底数化成两数的和与差的形式,且这种转化形式与除数有密切的关系.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网