题目内容
将杨辉三角中的每一个数Cnr都换成1 | ||
(n+1)
|
1 | ||
(n+1)
|
1 | ||
(n+1)
|
1 | ||
n
|
1 |
3 |
1 |
12 |
1 |
30 |
1 |
60 |
1 | ||
n
|
1 | ||
(n+1)
|
lim |
n→∞ |
分析:通过观察可得
=
=
(
-
)=〔(1+
+
+…+
)-(
+
+…+
)〕+〔(
+
+
+
+…+
)-(
+
+…+
)〕=1-
+
-
=
+
-
.进而可得
an.
1 | ||
(n+1)•
|
2 |
n•(n+1)•(n-1) |
1 |
n |
1 |
n-1 |
1 |
n+1 |
1 |
2 |
1 |
3 |
1 |
n-1 |
1 |
2 |
1 |
3 |
1 |
n |
1 |
3 |
1 |
4 |
1 |
5 |
1 |
6 |
1 |
n+1 |
1 |
2 |
1 |
3 |
1 |
n |
1 |
n |
1 |
n+1 |
1 |
2 |
1 |
2 |
1 |
n+1 |
1 |
n |
lim |
n→∞ |
解答:解:第一个空通过观察可得.
=
=
(
-
)
=
×
-
×
=
-
-
+
=
+
-
an=
+
+
+
++
+
=(1+
-1)+(
+
-
)+(
+
-
)+(
+
-
)+…+(
+
-
)+(
+
-
)
=(1+
+
+…+
)+(
+
+
+
+…+
)-2(
+
+…+
)
=〔(1+
+
+…+
)-(
+
+…+
)〕+〔(
+
+
+
+…+
)
-(
+
+…+
)〕
=1-
+
-
=
+
-
所以
an=
.
答案:
.
1 | ||
(n+1)•
|
2 |
n•(n+1)•(n-1) |
1 |
n |
1 |
n-1 |
1 |
n+1 |
=
1 |
n |
1 |
n-1 |
1 |
n |
1 |
n+1 |
1 |
n-1 |
1 |
n |
1 |
n |
1 |
n+1 |
1 |
n-1 |
1 |
n+1 |
2 |
n |
1 |
3 |
1 |
12 |
1 |
30 |
1 |
60 |
1 | ||
n
|
1 | ||
(n+1)
|
=(1+
1 |
3 |
1 |
2 |
1 |
4 |
2 |
3 |
1 |
3 |
1 |
5 |
2 |
4 |
1 |
4 |
1 |
6 |
2 |
5 |
1 |
n-2 |
1 |
n |
1 |
n-1 |
1 |
n-1 |
1 |
n+1 |
2 |
n |
=(1+
1 |
2 |
1 |
3 |
1 |
n-1 |
1 |
3 |
1 |
4 |
1 |
5 |
1 |
6 |
1 |
n+1 |
1 |
2 |
1 |
3 |
1 |
n |
=〔(1+
1 |
2 |
1 |
3 |
1 |
n-1 |
1 |
2 |
1 |
3 |
1 |
n |
1 |
3 |
1 |
4 |
1 |
5 |
1 |
6 |
1 |
n+1 |
-(
1 |
2 |
1 |
3 |
1 |
n |
=1-
1 |
n |
1 |
n+1 |
1 |
2 |
=
1 |
2 |
1 |
n+1 |
1 |
n |
所以
lim |
n→∞ |
1 |
2 |
答案:
1 |
2 |
点评:本题考查数列的性质和应用,解题时要认真审题,仔细解答.
练习册系列答案
相关题目