题目内容
A有一只放有x个红球,y个白球,z个黄球的箱子,且x+y+z=6(x,y,z∈N),B有一只放有3个红球,2个白球,1个黄球的箱子,两人各自从自己的箱子中任取一球,规定:当两球同色时A胜,异色时B胜;
(1)用x,y,z表示A胜的概率;
(2)若又规定当A取红、白、黄球而胜的得分分别为1、2、3分,否则得0分,求A得分的期望最大值及此时x,y,z的值.
(1)用x,y,z表示A胜的概率;
(2)若又规定当A取红、白、黄球而胜的得分分别为1、2、3分,否则得0分,求A得分的期望最大值及此时x,y,z的值.
分析:(1)由已知中当两球同色时A胜,根据A有一只放有x个红球,y个白球,z个黄球的箱子,且x+y+z=6(x,y,z∈N),B有一只放有3个红球,2个白球,1个黄球的箱子,代入相互独立事件概率计算公式,即可得到答案.
(2)由当A取红、白、黄球而胜的得分分别为1、2、3分,否则得0分,我们分别设A的得分为随机变量ξ,则我们可得随机变量ξ的取值可能为3,2,1,0,求出其分布列后,代入数学期望公式,即可得到答案.
(2)由当A取红、白、黄球而胜的得分分别为1、2、3分,否则得0分,我们分别设A的得分为随机变量ξ,则我们可得随机变量ξ的取值可能为3,2,1,0,求出其分布列后,代入数学期望公式,即可得到答案.
解答:解:(1)∵P(A胜)=P(A、B均取红球)+P(A、B均取白球)+P(A、B均取黄球)
又∵A有一只放有x个红球,y个白球,z个黄球的箱子,且x+y+z=6
B有一只放有3个红球,2个白球,1个黄球的箱子
∴P(A胜)=
×
+
×
+
×
=
(3x+2y+z)
(2)设A的得分为随机变量ξ,则
P(ξ=3)=
×
=
,
P(ξ=2)=
×
=
P(ξ=1)=
×
=
,
P(ξ=0)=1-
Eξ=3×
+2×
+1×
+0=
=
=
+
∵x,y,z∈N且x+y+z=6又0≤3x+2y+z≤36
∴当y=6时,Eξ取值最大值为
,此时x=z=0
又∵A有一只放有x个红球,y个白球,z个黄球的箱子,且x+y+z=6
B有一只放有3个红球,2个白球,1个黄球的箱子
∴P(A胜)=
x |
6 |
3 |
6 |
y |
6 |
2 |
6 |
z |
6 |
1 |
6 |
1 |
36 |
(2)设A的得分为随机变量ξ,则
P(ξ=3)=
z |
6 |
1 |
6 |
z |
36 |
P(ξ=2)=
y |
6 |
2 |
6 |
2y |
36 |
P(ξ=1)=
x |
6 |
3 |
6 |
3x |
36 |
P(ξ=0)=1-
3x+2y+z |
36 |
Eξ=3×
z |
36 |
2y |
36 |
3x |
36 |
3z+4y+3x |
36 |
3(x+y+z)+y |
36 |
1 |
2 |
y |
36 |
∵x,y,z∈N且x+y+z=6又0≤3x+2y+z≤36
∴当y=6时,Eξ取值最大值为
2 |
3 |
点评:本题考查的知识点是概率的应用,随机变量的分布列与随机变量的数学期望,其中(1)的关键是根据题意得到:P(A胜)=P(A、B均取红球)+P(A、B均取白球)+P(A、B均取黄球);(2)的关键是求出随机变量ξ的分布列.
练习册系列答案
相关题目