题目内容

抛物线的顶点在原点,对称轴为y轴,它与圆x2+y2=9相交,公共弦MN的长为2
5
,求该抛物线的方程,并写出它的焦点坐标与准线方程.
分析:根据公共弦长为2
5
,设M(m,-
5
)、N(m,
5
),代入圆方程解出m=±2,从而得出点M、N的坐标.再设抛物线方程为x2=2ay(a≠0),代入M、N坐标解出a值,即可得到抛物线的方程,进而可得抛物线的焦点坐标与准线方程.
解答:解:精英家教网∵抛物线与圆x2+y2=9相交,公共弦MN的长为2
5

∴设M(m,-
5
)、N(m,
5
).
将M、N坐标代入圆方程,得m2+5=9,解得m=±2(舍负),
∴M(2,-
5
)、N(2,
5
),或M(-2,-
5
)、N(-2,
5
),
设抛物线方程为x2=2ay(a≠0),
∵点M、N在抛物线上,
∴5=2a×(±2),解得2a=±
5
2

故抛物线的方程为x2=
5
2
y或x2=-
5
2
y.
抛物线x2=
5
2
y的焦点坐标为(0,
5
8
),准线方程为y=-
5
8

抛物线x2=-
5
2
y的焦点坐标为(0,-
5
8
),准线方程为y=
5
8
点评:本题已知抛物线与圆相交所得的弦长,求抛物线的方程.着重考查了直线与圆的位置关系、抛物线的标准方程与简单几何性质等知识,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网