题目内容

已知:集合M是满足下列性质的函数f(x)的全体:在定义域内存在x0,使得f(x0+1)=f(x0)+f(1)成立.

(1)函数f(x)=是否属于集合M?说明理由;

(2)设函数f(x)=lg,求实数a的取值范围;

(3)证明:函数f(x)=2x+x2∈M.

答案:
解析:

  解:(Ⅰ)f(x)=的定义域为

  令,整理得x2+x+1=0,Δ=-3<0,

  因此,不存在x使得f(x+1)=f(x)+f(1)成立,所以f(x)=; 3分

  (Ⅱ)f(x)=lg的定义域为R,f(1)=lg,a>0,

  若f(x)=lgM,则存在x∈R使得lg=lg+lg

  整理得存在x∈R使得(a2-2a)x2+2a2x+(2a2-2a)=0.

  (1)若a2-2a=0即a=2时,方程化为8x+4=0,解得x=-,满足条件:

  (2)若a2-2a≠0即a时,令Δ≥0,解得a∈,综上,a∈[3-,3+]; 7分

  (Ⅲ)f(x)=2x+x2的定义域为R,

  令2x+1+(x+1)2=(2x+x2)+(2+1),整理得2x+2x-2=0,

  令g(x)=2x+2x-2,所以g(0)·g(1)=-2<0,

  即存在x0∈(0,1)使得g(x)=2x+2x-2=0,

  亦即存在x0∈R使得2x+1+(x+1)2=(2x+x2)+(2+1),故f(x)=2x+x2∈M. 10分


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网