题目内容
一个动圆的圆心在抛物线y2=8x上,且动圆恒与直线x+2=0相切,则动圆必过定点( )A.(0,2)
B.(0,-2)
C.(2,0)
D.(4,0)
【答案】分析:先根据抛物线的标准方程表示出其准线方程,然后根据已知条件和抛物线的定义即可求解.
解答:解:∵抛物线y2=8x的准线方程为x=-2,
∴由题可知动圆的圆心在y2=8x上,且恒与抛物线的准线相切,
由定义可知,动圆恒过抛物线的焦点(2,0),
故选C.
点评:本题综合考查了抛物线的定义及直线与圆的位置关系,充分利用了抛物线上的点到准线的距离与点到焦点的距离相等这一特性.
解答:解:∵抛物线y2=8x的准线方程为x=-2,
∴由题可知动圆的圆心在y2=8x上,且恒与抛物线的准线相切,
由定义可知,动圆恒过抛物线的焦点(2,0),
故选C.
点评:本题综合考查了抛物线的定义及直线与圆的位置关系,充分利用了抛物线上的点到准线的距离与点到焦点的距离相等这一特性.
练习册系列答案
相关题目