题目内容

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
和圆O:x2+y2=b2,若C上存在点P,使得过点P引圆O的两条切线,切点分别为A,B,满足∠APB=60°,则椭圆C的离心率的取值范围是______.
连接OA,OB,OP,依题意,O、P、A、B四点共圆,
∵∠APB=60°,
∠APO=∠BPO=30°,
在直角三角形OAP中,∠AOP=60°,
∴cos∠AOP=
b
|OP|
=
1
2

∴|OP|=
b
1
2
=2b,
∴b<|OP|≤a,
∴2b≤a,
∴4b2≤a2,即4(a2-c2)≤a2
∴3a2≤4c2
c2
a2
3
4

3
2
≤e,又0<e<1,
3
2
≤e<1,
∴椭圆C的离心率的取值范围是[
3
2
,1).
故答案为:[
3
2
,1).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网