题目内容

已知△ABC中,角A、B、C的对边分别为a、b、c,且S△ABC=
a2+b2-c2
4
,那么∠C=
π
4
π
4
分析:由正弦定理的面积公式结合余弦定理,化简可得cosC=sinC即tanC=1,结合三角形内角的范围,可得C的大小.
解答:解:∵根据余弦定理,得a2+b2-c2=2abcosC
S△ABC=
a2+b2-c2
4
=
1
2
abcosC
∵由正弦定理得S△ABC=
1
2
absinC
1
2
abcosC=
1
2
absinC,得cosC=sinC
即tanC=1,C∈(0,π)得C=
π
4

故答案为:
π
4
点评:本题给出三角形面积公式关于a2、b2、c2的式子,求角C大小.着重考查了三角形面积公式和正余弦定理等知识,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网