题目内容

【题目】原命题:“设a,b,c∈R,若a>b,则ac2>bc2”,在原命题以及它的逆命题、否命题、逆否命题中,真命题的个数为(
A.0
B.1
C.2
D.4

【答案】C
【解析】解:逆命题:设a,b,c∈R,若ac2>bc2,则a>b;∵由ac2>bc2可得c2>0,∴能得到a>b,所以该命题为真命题;

否命题:设a,b,c∈R,若a≤b,则ac2≤bc2;∵c2≥0,∴由a≤b可以得到ac2≤bc2,所以该命题为真命题;

因为原命题和它的逆否命题具有相同的真假性,所以只需判断原命题的真假即可;

∵c2=0时,ac2=bc2,所以由a>b得到ac2≥bc2,所以原命题为假命题,即它的逆否命题为假命题;

∴为真命题的有2个.

故选C.

【考点精析】根据题目的已知条件,利用四种命题的相关知识可以得到问题的答案,需要掌握原命题:若P则q; 逆命题:若q则p;否命题:若┑P则┑q;逆否命题:若┑q则┑p.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网