题目内容
双曲线x2-y2=1的左焦点为F,点P为左支下半支上任意一点(异于顶点),则直线PF的斜率的变化范围是
- A.(-∞,0)
- B.(1,+∞)
- C.(-∞,0)∪(1,+∞)
- D.(-∞,-1)∪(1,+∞)
C
分析:当点P向双曲线右下方无限移动时,直线PF逐渐与渐近线平行,但是永不平行,所以倾斜角大于45°;当点P逐渐靠近顶点时,倾斜角逐渐增大,但是小于180°.由此可知直线PF的斜率的变化范围(-∞,0)∪(1,+∞).
解答:由题意条件知双曲线的渐近线倾斜角为45°,
当点P向双曲线右下方无限移动时,直线PF逐渐与渐近线平行,但是永不平行,所以倾斜角大于45°;
当点P逐渐靠近顶点时,倾斜角逐渐增大,但是小于180°.
所以直线PF的倾斜角的范围是(45°,180°).
由此可知直线PF的斜率的变化范围(-∞,0)∪(1,+∞).
故选C.
点评:本题考查双曲线的性质和应用,解题时要认真审题,仔细解答.
分析:当点P向双曲线右下方无限移动时,直线PF逐渐与渐近线平行,但是永不平行,所以倾斜角大于45°;当点P逐渐靠近顶点时,倾斜角逐渐增大,但是小于180°.由此可知直线PF的斜率的变化范围(-∞,0)∪(1,+∞).
解答:由题意条件知双曲线的渐近线倾斜角为45°,
当点P向双曲线右下方无限移动时,直线PF逐渐与渐近线平行,但是永不平行,所以倾斜角大于45°;
当点P逐渐靠近顶点时,倾斜角逐渐增大,但是小于180°.
所以直线PF的倾斜角的范围是(45°,180°).
由此可知直线PF的斜率的变化范围(-∞,0)∪(1,+∞).
故选C.
点评:本题考查双曲线的性质和应用,解题时要认真审题,仔细解答.
练习册系列答案
相关题目
若椭圆
+
=1过抛物线y2=8x的焦点,且与双曲线x2-y2=1有相同的焦点,则该椭圆的方程为( )
x2 |
a2 |
y2 |
b2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、x2+
|