题目内容
【题目】设数列{an}的前n项和为Sn,已知ban-2n=(b-1)Sn.
(1)证明:当b=2时,{an-n·2n-1}是等比数列;
(2)求{an}的通项公式.
【答案】(1)见解析(2)当b=2时,an=(n+1)·2n-1;当b≠2时,an=
【解析】
由题意知a1=2,且ban-2n=(b-1)Sn,ban+1-2n+1=(b-1)Sn+1,
两式相减得b(an+1-an)-2n=(b-1)an+1,
即an+1=ban+2n.①
(1)证明 当b=2时,由①知an+1=2an+2n,
于是an+1-(n+1)·2n=2an+2n-(n+1)·2n=2(an-n·2n-1),
又a1-1·21-1=1≠0,所以{an-n·2n-1}是首项为1,公比为2的等比数列.
(2)当b=2时,由(1)知an-n·2n-1=2n-1,即an=(n+1)·2n-1;当b≠2时,由①得,an+1-·2n+1=ban+2n-·2n+1=ban-·2n=b,因此an+1-·2n+1=b=·bn,
得an=
综上: 当b=2时,an=(n+1)·2n-1;当b≠2时,an=
练习册系列答案
相关题目
【题目】某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:
0 | |||||
0 | 5 | 0 |
(1)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数的解析式;
(2)将图象上所有点向左平行移动个单位长度,并把图象上所有点的横坐标缩短为原来的(纵坐标不变),得到的图象.若图象的一个对称中心为,求的最小值;
(3)在(2)条件下,求在上的增区间.