题目内容
3.对定义在[0,1]上,并且同时满足以下两个条件的函数f(x)称为M函数:(i) 对任意的x∈[0,1],恒有f(x)≥0;
(ii) 当x1≥0,x2≥0,x1+x2≤1时,总有f(x1+x2)≥f(x1)+f(x2)成立.
则下列四个函数中不是M函数的个数是( )
①f(x)=x2②f(x)=x2+1
③f(x)=ln(x2+1)④f(x)=2x-1.
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 利用已知条件函数的新定义,对四个选项逐一验证两个条件,判断即可.
解答 解:(i)在[0,1]上,四个函数都满足;(ii)x1≥0,x2≥0,x1+x2≤1;
对于①,$f({x_1}+{x_2})-[f({x_1})+f({x_2})]={({x_1}+{x_2})^2}-({x_1}^2+{x_2}^2)=2{x_1}{x_2}≥0$,∴①满足;
对于②,$f({x_1}+{x_2})-[f({x_1})+f({x_2})]=[{({x_1}+{x_2})^2}+1]-[({x_1}^2+1)+({x_2}^2+1)]$=2x1x2-1<0,∴②不满足.
对于③,$f({x_1}+{x_2})-[f({x_1})+f({x_2})]=ln[{({x_1}+{x_2})^2}+1]-[ln({x_1}^2+1)+ln({x_2}^2+1)]$=$ln[{({x_1}+{x_2})^2}+1]-ln[({x_1}^2+1)({x_2}^2+1)]=ln\frac{{{{({x_1}+{x_2})}^2}+1}}{{({x_1}^2+1)({x_2}^2+1)}}=ln\frac{{{x_1}^2+{x_2}^2+2{x_1}{x_2}+1}}{{{x_1}^2{x_2}^2+{x_1}^2+{x_2}^2+1}}$而x1≥0,x2≥0,∴$1≥{x_1}+{x_2}≥2\sqrt{{x_1}{x_2}}$,∴${x_1}{x_2}≤\frac{1}{4}$,∴${x_1}^2{x_2}^2≤\frac{1}{4}{x_1}{x_2}≤2{x_1}{x_2}$,
∴$\frac{{{x_1}^2+{x_2}^2+2{x_1}{x_2}+1}}{{{x_1}^2{x_2}^2+{x_1}^2+{x_2}^2+1}}≥1$,∴$ln\frac{{{x_1}^2+{x_2}^2+2{x_1}{x_2}+1}}{{{x_1}^2{x_2}^2+{x_1}^2+{x_2}^2+1}}≥0$,∴③满足;
对于④,$f({x_1}+{x_2})-[f({x_1})+f({x_2})]=({2^{{x_1}+{x_2}}}-1)-({2^{x_1}}-1+{2^{x_2}}-1)$
=${2^{x_1}}{2^{x_2}}-{2^{x_1}}-{2^{x_2}}+1=({2^{x_1}}-1)({2^{x_2}}-1)≥0$,∴④满足;
故选:A.
点评 本题通过函数的运算与不等式的比较,另外也可以利用函数在定义域内的变化率、函数图象的基本形式来获得答案,本题对学生的运算求解能力和数形结合思想提出一定要求.
A. | 1-$\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | 1-$\frac{\sqrt{3}}{2}$ | D. | $\frac{1}{2}$ |