题目内容

如图,在正四棱台内,以小底为底面.大底面中心为顶点作一内接棱锥.已知棱台小底面边长为b,大底面边长为a,并且棱台的侧面积与内接棱锥的侧面面积相等,求这个棱锥的高,并指出有解的条件.
精英家教网
如图,过高OO1和AD的中点E作棱锥和棱台的截面,得棱台的斜高EE1和棱锥的斜高为EO1,设OO1=h,∴S锥侧=
1
2
•4b•EO1=2bEO1

S台侧=
1
2
(4a+4b)•EE1=2(a+b)•EE1, ∴2bEO1=2(a+b) EE1      ①

∵OO1E1E是直角梯形,其中OE=
b
2
O1E1=
a
2

∴根据勾股定理得,EE12=h2+(
a
2
-
b
2
)
2
,EO12=h2+(
b
2
)
2
   ②

①式两边平方,把②代入得:b2(h2+
b2
4
)=(a+b)2[h2+(
a
2
-
b
2
)
2
]

解得h2=
a2(2b2-a2)
4a(a+2b)
,即h=
1
2
a(2b2-a2)
a+2b

显然,由于a>0,b>0,所以此题当且仅当a<
2
b
时才有解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网