题目内容
若多项式(1+x)m=a0+a1x+a2x2+…+amxm满足:a1+2a2+3a3+…+mam=80,则
(
+
+
+…+
)的值是( )
| lim |
| n→∞ |
| 1 |
| a4 |
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
A、
| ||
B、
| ||
C、
| ||
D、
|
分析:y′=m(1+x)m-1=a1+2a2x+3a3x2+…+mamxm-1,令x=1,得2m-1m=a1+2a2+3a3+…+mam=80.解得m=5.所以
(
+
+
+…+
)=
(
+
+…+
)=
=
.
| lim |
| n→∞ |
| 1 |
| a4 |
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| lim |
| n→∞ |
| 1 |
| 5 |
| 1 |
| 52 |
| 1 |
| 5n |
| ||
1-
|
| 1 |
| 4 |
解答:解:设y=(1+x)m=a0+a1x+a2x2+…+amxm,
y′=m(1+x)m-1=a1+2a2x+3a3x2+…+mamxm-1,
令x=1,得2m-1m=a1+2a2+3a3+…+mam=80.
解得m=5.∴a4=C54=5.
∴
(
+
+
+…+
)=
(
+
+…+
)
=
=
.
故选B.
y′=m(1+x)m-1=a1+2a2x+3a3x2+…+mamxm-1,
令x=1,得2m-1m=a1+2a2+3a3+…+mam=80.
解得m=5.∴a4=C54=5.
∴
| lim |
| n→∞ |
| 1 |
| a4 |
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| lim |
| n→∞ |
| 1 |
| 5 |
| 1 |
| 52 |
| 1 |
| 5n |
=
| ||
1-
|
| 1 |
| 4 |
故选B.
点评:本题考查极限及其运算,解题的关键是利用导数求出m的值.
练习册系列答案
相关题目