题目内容

已知函数的定义域为,值域为,那么满足条件的整数对共有                                         (   )
A.B.C.D.
C

分析:由题设,值域是[0,1],可得1≤ ≤2,由此解出0≤|x|≤2,由于x=0时y=1,x=±2时,y=0,故在定义域中一定有0,而±2必有其一,当一定有2时,取b=2时,a可取-2,-1,0,当b=-2时,a可取0,1
解:由题意函数f(x)= -1的值域是[0,1],
∴1≤≤2
∴0≤|x|≤2
∴-2≤x≤2
∴[a,b]?[-2,2]
由于x=0时y=1,x=±2时,y=0,故在定义域中一定有0,而±2必有其一,又a,b∈Z
取b=2时,a可取-2,-1,0,取a=-2时,b可取0,1
故满足条件的整数数对(a,b)共有5对
故应选C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网