题目内容
设
,
,
为单位向量,
,
的夹角为60°,则(
+
+
)•
的最大值为
a |
b |
c |
a |
b |
a |
b |
c |
c |
1+
3 |
1+
.3 |
分析:可设
=(1,0),
=(
,
),
=(cosα,sinα),代入(
+
+
)•
=cosα+
cosα+
sinα+1=
sin(α+ 60° )+1,根据三角函数的性质可求
a |
b |
1 |
2 |
| ||
2 |
c |
a |
b |
c |
c |
1 |
2 |
| ||
2 |
3 |
解答:解:由题意|
|=|
|=|
|=1,<
,
>=60°
设a=(1,0),
=(
,
),
=(cosα,sinα)
∴(
+
+
)•
=
•
+
•
+|
|2=cosα+
cosα+
sinα+1
=
cosα+
sinα+1
=
sin(α+ 60° )+1≤
+1
即最大值为1+
故答案为:1+
a |
b |
c |
a |
b |
设a=(1,0),
b |
1 |
2 |
| ||
2 |
c |
∴(
a |
b |
c |
c |
a |
c |
b |
c |
c |
1 |
2 |
| ||
2 |
=
3 |
2 |
| ||
2 |
=
3 |
3 |
即最大值为1+
3 |
故答案为:1+
3 |
点评:本题考查平面向量数量积的运算,函数与方程思想,是中档题.
练习册系列答案
相关题目