题目内容
已知函数f(x)=loga(a-ax)且a>1,
(1)求函数的定义域和值域;
(2)讨论f(x)在其定义域上的单调性;
(3)证明函数图象关于y=x对称.
【答案】
(1)定义域为(-∞,1),值域为(-∞,1);
(2)f(x)在定义域(-∞,1)上是减函数;(3)见解析。
【解析】主要考查对数函数的图象和性质,复合函数的单调性。
解:(1)定义域为(-∞,1),值域为(-∞,1)
(2)设1>x2>x1
∵a>1,∴,于是a-<a-
则loga(a-a)<loga(a-)
即f(x2)<f(x1)
∴f(x)在定义域(-∞,1)上是减函数
(3)证明:令y=loga(a-ax)(x<1),则a-ax=ay,x=loga(a-ay)
∴f-1(x)=loga(a-ax)(x<1)
故f(x)的反函数是其自身,得函数f(x)=loga(a-ax)(x<1=图象关于y=x对称.
练习册系列答案
相关题目