ÌâÄ¿ÄÚÈÝ

10£®ÒÑÖªÇúÏßC1£º¦Ñ=1£¬ÇúÏßC2£º$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t-\sqrt{2}}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©
£¨1£©ÇóC1ÓëC2½»µãµÄ×ø±ê£»
£¨2£©Èô°ÑC1£¬C2Éϸ÷µãµÄ×Ý×ø±ê¶¼Ñ¹ËõΪԭÀ´µÄÒ»°ë£¬·Ö±ðµÃµ½ÇúÏßC1¡äÓëC2¡ä£¬Ð´³öC1¡äÓëC2¡äµÄ²ÎÊý·½³Ì£¬C1ÓëC2¹«¹²µãµÄ¸öÊýºÍC1¡äÓëC2¡ä¹«¹²µãµÄ¸öÊýÊÇ·ñÏàͬ£¬ËµÃ÷ÄãµÄÀíÓÉ£®

·ÖÎö £¨1£©·Ö±ðÇó³öC1µÄÖ±½Ç×ø±ê·½³ÌºÍC2µÄÆÕͨ·½³Ì£¬ÁªÁ¢·½³Ì×éÄÜÇó³öC1ÓëC2½»µãµÄ×ø±ê£®
£¨2£©Ñ¹ËõºóµÄ²ÎÊý·½³Ì·Ö±ðΪ${{C}_{1}}^{'}$£º$\left\{\begin{array}{l}{x=cos¦È}\\{y=\frac{1}{2}sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©${{C}_{2}}^{'}$£º$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t-\sqrt{2}}\\{y=\frac{\sqrt{2}}{4}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬»¯ÎªÆÕͨ·½³Ì£¬ÁªÁ¢ÏûÔª£¬ÓÉÆäÅбðʽµÃµ½Ñ¹ËõºóµÄÖ±Ïß${{C}_{2}}^{'}$ÓëÍÖÔ²${{C}_{1}}^{'}$ÈÔȻֻÓÐÒ»¸ö¹«¹²µã£¬ºÍC1ÓëC2¹«¹²µã¸öÊýÏàͬ£®

½â´ð ½â£º£¨1£©¡ßÇúÏßC1£º¦Ñ=1£¬¡àC1µÄÖ±½Ç×ø±ê·½³ÌΪx2+y2=1£¬
¡àC1ÊÇÒÔÔ­µãΪԲÐÄ£¬ÒÔ1Ϊ°ë¾¶µÄÔ²£¬
¡ßÇúÏßC2£º$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t-\sqrt{2}}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬¡àC2µÄÆÕͨ·½³ÌΪx-y+$\sqrt{2}$=0£¬ÊÇÖ±Ïߣ¬
ÁªÁ¢$\left\{\begin{array}{l}{x-y+\sqrt{2}=0}\\{{x}^{2}+{y}^{2}=1}\end{array}\right.$£¬½âµÃx=-$\frac{\sqrt{2}}{2}$£¬y=$\frac{\sqrt{2}}{2}$£®
¡àC2ÓëC1Ö»ÓÐÒ»¸ö¹«¹²µã£º£¨-$\frac{\sqrt{2}}{2}$£¬$\frac{\sqrt{2}}{2}$£©£®
£¨2£©Ñ¹ËõºóµÄ²ÎÊý·½³Ì·Ö±ðΪ
${{C}_{1}}^{'}$£º$\left\{\begin{array}{l}{x=cos¦È}\\{y=\frac{1}{2}sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©${{C}_{2}}^{'}$£º$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t-\sqrt{2}}\\{y=\frac{\sqrt{2}}{4}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬
»¯ÎªÆÕͨ·½³ÌΪ£º${{C}_{1}}^{'}$£ºx2+4y2=1£¬${{C}_{2}}^{'}$£ºy=$\frac{1}{2}x+\frac{\sqrt{2}}{2}$£¬
ÁªÁ¢ÏûÔªµÃ$2{x}^{2}+2\sqrt{2}x+1=0$£¬
ÆäÅбðʽ$¡÷=£¨2\sqrt{2}£©^{2}-4¡Á2¡Á1=0$£¬
¡àѹËõºóµÄÖ±Ïß${{C}_{2}}^{'}$ÓëÍÖÔ²${{C}_{1}}^{'}$ÈÔȻֻÓÐÒ»¸ö¹«¹²µã£¬ºÍC1ÓëC2¹«¹²µã¸öÊýÏàͬ£®

µãÆÀ ±¾Ì⿼²éÁ½ÇúÏߵĽ»µã×ø±êµÄÇ󷨣¬¿¼²éѹËõºóµÄÖ±ÏßÓëÍÖÔ²µÄ¹«¹²µã¸öÊýµÄÅжϣ¬ÊÇ»ù´¡Ì⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÒ»Ôª¶þ´Î·½³ÌµÄ¸ùµÄÅбðʽµÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø