题目内容
已知圆的方程:,
(Ⅰ)求的取值范围;
(Ⅱ)当圆与圆:相外切时,求直线:被圆,所截得的弦的长.
已知直线:(为参数),曲线:(为参数).
(1)设与相交于,两点,求;
(2)若把曲线上各点的横坐标伸长为原来的倍,纵坐标伸长为原来的3倍,得到曲线,设点是曲线上的一个动点,求它到直线的距离的最大值.
复数满足(为虚数单位),则复数在复平面内对应的点位于( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
已知甲、乙两组数据如茎叶图所示,若它们的中位数相同,平均数也相同,则图中的的比值( ).
A. 1 B. 3 C. D.
(本小题满分16分)已知椭圆的左、右焦点分别为、,短轴两个端点为、,且四边形是边长为2的正方形.
(1)求椭圆的方程;
(2)若、分别是椭圆长轴的左、右端点,动点满足,连接,交椭圆于点.证明:为定值.
(3)在(2)的条件下,试问轴上是否存异于点的定点,使得以为直径的圆恒过直线、的交点,若存在,求出点的坐标;若不存在,请说明理由.
已知,分别是双曲线:的左,右焦点,若向关于渐近线的对称点恰好落在以为圆心,为半径的圆上,则双曲线的离心率为( )
A. B. 3 C. D. 2
已知,是椭圆的两焦点,过的直线交椭圆于,,若的△周长为8,则椭圆方程为( )
A. B. C. D.
已知函数在在上的最大值为,最小值为,则( )
A. 4 B. 2 C. 1 D. 0
已知平面上三点满足, , ,则的值等于__________.