题目内容

已知数列{an}与{bn}有如下关系:a1=2,an+1=
1
2
(an+
1
an
),bn=
an+1
an-1

(1)求数列{bn}的通项公式.
(2)设Sn是数列{an}的前n项和,当n≥2时,求证:Sn<n+
4
3
分析:(1)根据bn=
an+1
an-1
,an+1=
1
2
(an+
1
an
),可得bn+1=
an+1+1
an+1-1
=(
an+1
an-1
)
2
=
b
2
n
>0
,迭代可得数列{bn}的通项公式;
(2)利用当n≥2时,an+1-1=
an-1
32n-1+1
1
10
(an-1)
,可得a3-1≤
1
10
(a2-1)
a4-1≤
1
10
(a3-1)
,…,an-1≤
1
10
(an-1-1)
,以上式子累和得Sn-a1-a2-(n-2)≤
1
10
[Sn-1-a1-(n-2)]
,进而利用放缩法可证Sn<n+
4
3
解答:(1)解:∵bn=
an+1
an-1

∴b1=
a1+1
a1-1
=3

∵an+1=
1
2
(an+
1
an
),
∴bn+1=
an+1+1
an+1-1
=(
an+1
an-1
)
2
=
b
2
n
>0

bn=
b
2
n-1
=…=32n-1

(2)证明:当n≥2时,an+1-1=
an-1
32n-1+1
1
10
(an-1)

(当且仅当n=2时取等号)且a2=
1
2
(a1+
1
a1
)=
5
4

a3-1≤
1
10
(a2-1)
a4-1≤
1
10
(a3-1)
,…,an-1≤
1
10
(an-1-1)

以上式子累和得Sn-a1-a2-(n-2)≤
1
10
[Sn-1-a1-(n-2)]

∴10[Sn-a1-a2-(n-2)]≤Sn-1-a1-(n-2)
9Sn
25
2
+9n-
32n-1+1
32n-1-1

Sn
25
18
+n-
32n-1+1
9(32n-1-1)
25
18
+n-
1
9
=
23
18
+n<
24
18
+n

∴Sn<n+
4
3
.得证
点评:本题以数列递推式为载体,考查数列的通项公式,考查不等式的证明,考查放缩法的运用,有难度.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网